
iv erilog(1) Version 10.0 (stable) iv erilog(1)

NAME
iv erilog - Icarus Verilog compiler

SYNOPSIS
iverilog [−ESVv] [−Bpath] [−ccmdfile|−fcmdfile] [−Dmacro[=defn]] [−Pparameter=value] [−pflag=value]
[−dname] [−g1995|−g2001|−g2005|−g2005-sv|−g2009|−g2012|−g<feature>] [−Iincludedir] [−mmodule]
[−M[mode=]file] [−Nfile] [−ooutputfilename] [−stopmodule] [−ttype] [−Tmin/typ/max] [−Wclass]
[−ypath] sourcefile

DESCRIPTION
iverilog is a compiler that translates Verilog source code into executable programs for simulation, or other
netlist formats for further processing. The currently supported targets arevvp for simulation, andfpga for
synthesis. Other target types are added as code generators are implemented.

OPTIONS
iverilog accepts the following options:

-Bbase The iverilog program uses external programs and configuration files to preprocess and compile
the Verilog source. Normally, the path used to locate these tools is built into theiverilog program.
However, the −B switch allows the user to select a different set of programs. The path given is
used to locateivlpp, ivl, code generators and the VPI modules.

-cfile -ffile
These flags specify an input file that contains a list of Verilog source files. This is similar to the
command fileof other Verilog simulators, in that it is a file that contains the file names instead of
taking them on the command line. SeeCommand Filesbelow.

-Dmacro
Defines macromacrowith the string ‘1’ as its definition. This form is normally only used to trig-
ger ifdef conditionals in the Verilog source.

-Dmacro=defn
Defines macromacroasdefn.

-Pparameter=value
Override (i.e. defparam) a parameter in a root module. This allows the user to override at compile
time (defparam) a parameter in a root module instance. For example,−Pmain.foo=2overrides the
parameter foo in the root instance main with the value 2.

-dname Activate a class of compiler debugging messages. The−d switch may be used as often as neces-
sary to activate all the desired messages. Supported names are scopes, eval_tree, elaborate, and
synth2; any other names are ignored.

-E Preprocess the Verilog source, but do not compile it. The output file is the Verilog input, but with
file inclusions and macro references expanded and removed. This is useful, for example, to pre-
process Verilog source for use by other compilers.

-g1995|-g2001|-g2001-noconfig|-g2005|-g2005-sv|-g2009|-g2012
Select the Verilog languagegeneration to support in the compiler. This selects between
IEEE1364−1995, IEEE1364−2001, IEEE1364−2005, IEEE1800−2005, IEEE1800−2009, or
IEEE1800−2012. Icarus Verilog currently defaults to theIEEE1364−2005generation of the lan-
guage. This flag is used to restrict the language to a set of keywords/features, this allows simula-
tion of older Verilog code that may use newer keywords and for compatibility with other tools.
Much of theIEEE1800generations functionality is not currently supported.The IEEE1800gen-
erations do parse all the keywords, so they can be used to verify thatIEEE1364compliant Verilog
code does not use any of the newIEEE1800keywords.

Aug 7th, 2015 1

iv erilog(1) Version 10.0 (stable) iv erilog(1)

-gverilog-ams|-gno-verilog-ams
Enable or disable (default) support for Verilog−AMS. Very little Verilog−AMS specific function-
ality is currently supported.

-gspecify|-gno-specify
Enable or disable (default) specify block support. When enabled, specify block code is elabo-
rated. When disabled, specify blocks are parsed but ignored. Specify blocks are commonly not
needed for RTL simulation, and in fact can hurt performance of the simulation. However, dis-
abling specify blocks reduces accuracy of full-timing simulations.

-gstd-include|-gno-std-include
Enable (default) or disable the search of a standard installation include directory after all other
explicit include directories. This standard include directory is a convenient place to install stan-
dard header files that a Verilog program may include.

-grelative-include|-gno-relative-include
Enable or disable (default) adding the local files directory to the beginning of the include file
search path. This allows files to be included relative to the current file not the more common files
are only found in the working directory or in the specified include file search path.

-gxtypes|-gno-xtypes
Enable (default) or disable support for extended types. Enabling extended types allows for new
types that are supported by Icarus Verilog as extensions beyond the baseline Verilog. It may be
necessary to disable extended types if compiling code that clashes with the few new keywords
used to implement the type system.

-gio-range-error|-gno-io-range-error
The standards requires that a vectored port have matching ranges for its port declaration as well
as any net/register declaration. It was common practice in the past to only specify the range for
the net/register declaration and some tools still allow this. By default any mismatch is reported as
a error. Using−gno−io−range−error will produce a warning instead of a fatal error for the case
of a vectored net/register and a scalar port declaration.

-gstrict-ca-eval|-gno-strict-ca-eval
The standard requires that if any input to a continuous assignment expression changes value, the
entire expression is re-evaluated. By default, parts of the expression that do not depend on the
changed input value(s) are not re-evaluated. If an expression contains a call to a function that
doesn’t depend solely on its input values or that has side effects, the resulting behavior will differ
from that required by the standard. Using−gstrict−ca−eval will force standard compliant behav-
ior (with some loss in performance).

-gstrict-expr-width |-gno-strict-expr-width
Enable or disable (default) strict compliance with the standard rules for determining expression
bit lengths. When disabled, the RHS of a parameter assignment is evaluated as a lossless expres-
sion, as is any expression containing an unsized constant number, and unsized constant numbers
are not truncated to integer width.

-I includedir
Append directoryincludedir to list of directories searched for Verilog include files. The−I switch
may be used many times to specify several directories to search, the directories are searched in
the order they appear on the command line.

-Mpath This is equivalent to−Mall=path . Preserved for backwards compatibility.

-Mmode=path
Write into the file specified by path a list of files that contribute to the compilation of the design.
If mode is all or prefix, this includes files that are included by include directives and files that are
automatically loaded by library support as well as the files explicitly specified by the user. If
mode is include, only files that are included by include directives are listed. Ifmode is module,
only files that are specified by the user or that are automatically loaded by library support are

Aug 7th, 2015 2

iv erilog(1) Version 10.0 (stable) iv erilog(1)

listed. The output is one file name per line, with no leading or trailing space. Ifmode is prefix,
files that are included by include directives are prefixed by "I " and other files are prefixed by "M
".

-mmodule
Add this module to the list of VPI modules to be loaded by the simulation. Many modules can be
specified, and all will be loaded, in the order specified. The system module is implicit and always
included. Ifa System Function Table file (<module>.sft) exists for the module it will be loaded
automatically.

-Npath This is used for debugging the compiler proper. Dump the final netlist form of the design to the
specified file. It otherwise does not affect operation of the compiler. The dump happens after the
design is elaborated and optimized.

-o filename
Place output in the filefilename. If no output file name is specified,iverilog uses the default name
a.out.

-pflag=value
Assign a value to a target specific flag. The−p switch may be used as often as necessary to spec-
ify all the desired flags. The flags that are used depend on the target that is selected, and are
described in target specific documentation. Flags that are not used are ignored.

-S Synthesize. Normally, if the target can accept behavioral descriptions the compiler will leave pro-
cesses in behavioral form. The−S switch causes the compiler to perform synthesis even if it i s
not necessary for the target. If the target type is a netlist format, the−S switch is unnecessary and
has no effect.

-s topmodule
Specify the top level module to elaborate. Icarus Verilog will by default choose modules that are
not instantiated in any other modules, but sometimes that is not sufficient, or instantiates too
many modules. If the user specifies one or more root modules with−s flags, then they will be
used as root modules instead.

-Tmin|typ|max
Use this switch to select min, typ or max times from min:typ:max expressions. Normally, the
compiler will simply use the typ value from these expressions (printing a warning for the first ten
it finds) but this switch will tell the compiler explicitly which value to use. This will suppress the
warning that the compiler is making a choice.

-ttarget Use this switch to specify the target output format. See theTARGETS section below for a list of
valid output formats.

-v Turn on verbose messages. This will print the command lines that are executed to perform the
actual compilation, along with version information from the various components, as well as the
version of the product as a whole.You will notice that the command lines include a reference to
a key temporary file that passes information to the compiler proper. To keep that file from being
deleted at the end of the process, provide a file name of your own in the environment variable
IVERILOG_ICONFIG .

If the selected target isvvp, the−v switch is appended to the shebang line in the compiler output
file, so directly executing the compiler output file will turn on verbose messages invvp. This
extra verbosity can be avoided by using thevvpcommand to indirectly execute the compiler out-
put file.

-V Print the version of the compiler, and exit.

-Wclass Turn on different classes of warnings. See theWARNING TYPES section below for descriptions
of the different warning groups. If multiple−W switches are used, the warning set is the union of
all the requested classes.

Aug 7th, 2015 3

iv erilog(1) Version 10.0 (stable) iv erilog(1)

-ylibdir Append the directory to the library module search path. When the compiler finds an undefined
module, it looks in these directories for files with the right name.

-Ysuffix Add suffix to the list of accepted file name suffixes used when searching a library for cells. The
list defaults to the single entry.v.

MODULE LIBRARIES
The Icarus Verilog compiler supports module libraries as directories that contain Verilog source files.Dur-
ing elaboration, the compiler notices the instantiation of undefined module types. If the user specifies
library search directories, the compiler will search the directory for files with the name of the missing mod-
ule type. If it finds such a file, it loads it as a Verilog source file, they tries again to elaborate the module.

Library module files should contain only a single module, but this is not a requirement. Library modules
may reference other modules in the library or in the main design.

TARGETS
The Icarus Verilog compiler supports a variety of targets, for different purposes, and the−t switch is used to
select the desired target.

null The null target causes no code to be generated. It is useful for checking the syntax of the Verilog
source.

vvp This is the default. The vvp target generates code for the vvp runtime. The output is a complete
program that simulates the design but must be run by thevvp command. The -pfileline=1 option
can be used to add procedural statement debugging opcodes to the generated code.

fpga This is a synthesis target that supports a variety of fpga devices, mostly by EDIF format output.
The Icarus Verilog fpga code generator can generate complete designs or EDIF macros that can in
turn be imported into larger designs by other tools. Thefpga target implies the synthesis−Sflag.

vhdl This target produces a VHDL translation of the Verilog netlist. The output is a single file contain-
ing VHDL entities corresponding to the modules in the Verilog source code. Note that only a sub-
set of the Verilog language is supported. See the wiki for more information.

WARNING TYPES
These are the types of warnings that can be selected by the−W switch. All the warning types (other than
all) can also be prefixed withno− to turn off that warning. This is most useful after a−Wall argument to
suppress isolated warning types.

all This enables the anachronisms, implicit, portbind, select−range, timescale, and sensitiv-
ity−entire−array warning categories.

anachronisms
This enables warnings for use of features that have been deprecated or removed in the selected
generation of the Verilog language.

implicit This enables warnings for creation of implicit declarations. For example, if a scalar wire X is
used but not declared in the Verilog source, this will print a warning at its first use.

portbind
This enables warnings for ports of module instantiations that are not connected but probably
should be. Dangling input ports, for example, will generate a warning.

Aug 7th, 2015 4

iv erilog(1) Version 10.0 (stable) iv erilog(1)

select-range
This enables warnings for constant out of bound selects. This includes partial or fully out of
bound selects as well as a select containing a ’bx or ’bz in the index.

timescale
This enables warnings for inconsistent use of the timescale directive. It detects if some modules
have no timescale, or if modules inherit timescale from another file. Both probably mean that
timescales are inconsistent, and simulation timing can be confusing and dependent on compila-
tion order.

infloop This enables warnings for always statements that may have runtime infinite loops (has paths with
no or zero delay). This class of warnings is not included in−Wall and hence does not have ano−
variant. A fatal error message will always be printed when the compiler can determine that there
will definitely be an infinite loop (all paths have no or zero delay).

When you suspect an always statement is producing a runtime infinite loop use this flag to find
the always statements that need to have their logic verified. It is expected that many of the warn-
ings will be false positives, since the code treats the value of all variables and signals as indeter-
minate.

sensitivity-entire-vector
This enables warnings for when a part select within an "always @*" statement results in the
entire vector being added to the implicit sensitivity list. Although this behaviour is prescribed by
the IEEE standard, it is not what might be expected and can have performance implications if the
vector is large.

sensitivity-entire-array
This enables warnings for when a word select within an "always @*" statement results in the
entire array being added to the implicit sensitivity list. Although this behaviour is prescribed by
the IEEE standard, it is not what might be expected and can have performance implications if the
array is large.

SYSTEM FUNCTION TABLE FILES
If the source file name as a.sft suffix, then it is taken to be a system function table file. A System function
table file is used to describe to the compiler the return types for system functions. This is necessary because
the compiler needs this information to elaborate expressions that contain these system functions, but cannot
run the sizetf functions since it has no run-time.

The format of the table is ASCII, one function per line. Empty lines are ignored, and lines that start with the
’#’ character are comment lines. Each non-comment line starts with the function name, then the vpi type
(i.e. vpiSysFuncReal). The following types are supported:

vpiSysFuncReal
The function returns a real/realtime value.

vpiSysFuncInt
The function returns an integer.

vpiSysFuncSized <wid> <signed|unsigned>
The function returns a vector with the given width, and is signed or unsigned according to the
flag.

Aug 7th, 2015 5

iv erilog(1) Version 10.0 (stable) iv erilog(1)

COMMAND FILES
The command file allows the user to place source file names and certain command line switches into a text
file instead of on a long command line. Command files can include C or C++ style comments, as well as #
comments, if the # starts the line.

file name
A simple file name or file path is taken to be the name of a Verilog source file. The path starts
with the first non-white-space character. Variables are substituted in file names.

-c cmdfile-f cmdfile
A −c or −f token prefixes a command file, exactly like it does on the command line. The cmdfile
may be on the same line or the next non-comment line.

-y libdir A −y token prefixes a library directory in the command file, exactly like it does on the command
line. The parameter to the−y flag may be on the same line or the next non-comment line.

Variables in thelibdir are substituted.

+incdir+ includedir
The +incdir+ token in command files gives directories to search for include files in much the
same way that−I flags work on the command line. The difference is that multiple+includedir
directories are valid parameters to a single+incdir+ token, although you may also have multiple
+incdir+ lines.

Variables in theincludedirare substituted.

+libext+ext
The +libext token in command files fives file extensions to try when looking for a library file.
This is useful in conjunction with−y flags to list suffixes to try in each directory before moving
on to the next library directory.

+libdir+ dir
This is another way to specify library directories. See the −y flag.

+libdir-nocase+dir
This is like the +libdir statement, but file names inside the directories declared here are case
insensitive. The missing module name in a lookup need not match the file name case, as long as
the letters are correct. For example, "foo" matches "Foo.v" but not "bar.v".

+define+NAME=value
The +define+ token is the same as the−D option on the command line. The value part of the
token is optional.

+parameter+NAME=value
The+parameter+ token is the same as the−P option on the command line.

+timescale+value
The +timescale+token is used to set the default timescale for the simulation. This is the time
units and precision before any ‘ timescale directive or after a ‘resetall directive. The default is
1s/1s.

Aug 7th, 2015 6

iv erilog(1) Version 10.0 (stable) iv erilog(1)

+toupper-filename
This token causes file names after this in the command file to be translated to uppercase. This
helps with situations where a directory has passed through a DOS machine, and in the process the
file names become munged.

+tolower-filename
This is similar to the+toupper−filenamehack described above.

+integer-width+value
This allows the programmer to select the width for integer variables in the Verilog source. The
default is 32, the value can be any desired integer value.

+width-cap+value
This allows the programmer to select the width cap for unsized expressions. Ifthe calculated
width for an unsized expression exceeds this value, the compiler will issue a warning and limit
the expression width to this value.

VARIABLES IN COMMAND FILES
In certain cases, iverilog supports variables in command files. These are strings of the form "$(varname)" or
"${ varname}", where varname is the name of the environment variable to read. The entire string is
replaced with the contents of that variable. Variables are only substituted in contexts that explicitly support
them, including file and directory strings.

Variable values come from the operating system environment, and not from preprocessor defines elsewhere
in the file or the command line.

PREDEFINED MACROS
The following macros are predefined by the compiler:

__ICARUS__ = 1
This is always defined when compiling with Icarus Verilog.

__VAMS_ENABLE__ = 1
This is defined if Verilog−AMS is enabled.

EXAMPLES
These examples assume that you have a Verilog source file called hello.v in the current directory

To compile hello.v to an executable file called a.out:

iv erilog hello.v

To compile hello.v to an executable file called hello:

iv erilog −o hello hello.v

To compile and run explicitly using the vvp runtime:

iv erilog −ohello.vvp −tvvp hello.v

Aug 7th, 2015 7

iv erilog(1) Version 10.0 (stable) iv erilog(1)

AUTHOR
Steve Williams (steve@icarus.com)

SEE ALSO
vvp(1),<http://i verilog.icarus.com/>

Tips on using, debugging, and developing the compiler can be found at<http://i verilog.wikia.com/>

COPYRIGHT
Copyright © 2002−2015 Stephen Williams

This document can be freely redistributed according to the terms of the
GNU General Public License version 2.0

Aug 7th, 2015 8

