
iv erilog-vpi(1) Version 10.0 (stable) iv erilog-vpi(1)

NAME
iv erilog-vpi - Compile front end for VPI modules

SYNOPSIS
iverilog-vpi [options]sourcefile...

DESCRIPTION
iverilog−vpi is a tool to simplify the compilation of VPI modules for use with Icarus Verilog. It takes on the
command line a list of C or C++ source files, and generates as output a linked VPI module. See thevvp(1)
man page for a description of how the linked module is loaded by a simulation.

By default the output is named after the first source file. For example, if the first source file is namedfoo.c,
the output becomesfoo.vpi.

OPTIONS
iverilog−vpi accepts the following options:

-llibrary Include the named library in the link of the VPI module. This allows VPI modules to further ref-
erence external libraries.

-Idirectory
Add directoryto the list of directories that will be searched for header files.

-Ddefine Define a macro nameddefine.

--name=name
Normally, the output VPI module will be named after the first source file passed to the command.
This flag sets the name (without the .vpi suffix) of the output vpi module.

PC-ONLY OPTIONS
When built as a native Windows program (using the MinGW toolchain), by default iverilog−vpi will
attempt to locate the MinGW tools needed to compile a VPI module on the system path (as set by the PATH
environment variable). As an alternative, the user may specify the location of the MinGW tools via the fol-
lowing option.

-mingw=path
Tell the program the root of the MinGW compiler tool suite. Thevvp runtime is compiled with
this compiler, and this is the compiler thativerilog−vpi expects to use to compile your source
code. If this option accompanies a list of files, it will apply to the current build only. If this option
is provided on its own, iverilog−vpi will save thepath in the registry and use that path in prefer-
ence to the system path for subsequent operations, avoiding the need to specify it on the com-
mand line every time.

INFORMATIONAL OPTIONS
iverilog−vpi includes additional flags to let Makefile gurus peek at the configuration of theiverilog installa-
tion. Thisway, Makefiles can be written that handle complex VPI builds natively, and without hard-coding
values that depend on the system and installation. If used at all, these options must be used one at a time,
and without any other options or directives.

May 10th, 2015 1



iv erilog-vpi(1) Version 10.0 (stable) iv erilog-vpi(1)

--install-dir
Print the install directory for VPI modules.

--cflags Print the compiler flags (CFLAGS or CXXFLAGS) needed to compile source code destined for a
VPI module.

--ldflags Print the linker flags (LDFLAGS) needed to link a VPI module.

--ldlibs Print the libraries (LDLIBS) needed to link a VPI module.

Example GNU makefile that takes advantage of these flags:

CFLAGS = −Wall −O $(CFLAGS_$@)
VPI_CFLAGS := $(shell iverilog-vpi −−cflags)
CFLAGS_messagev.o = $(VPI_CFLAGS)
CFLAGS_fifo.o = $(VPI_CFLAGS)
messagev.o fifo.o: transport.h
messagev.vpi: messagev.o fifo.o

iv erilog-vpi $ˆ

AUTHOR
Steve Williams (steve@icarus.com)

SEE ALSO
iv erilog(1), vvp(1),<http://i verilog.icarus.com/>, <http://mingw-w64.yaxm.org/>,

COPYRIGHT
Copyright © 2002−2015 Stephen Williams

This document can be freely redistributed according to the terms of the
GNU General Public License version 2.0

May 10th, 2015 2


